des加密算法

DES加密

des对称加密,对称加密,是一种比较传统的加密方式,其加密运算、解密运算使用的是同样的密钥,信息的发送者和信息的接收者在进行信息的传输与处理时,必须共同持有该密码(称为对称密码),是一种对称加密算法。

数据加密标准(Data Encryption Standard, DES)中的算法是第一个也是最重要的现代对称加密算法,其分组长度为64比特,使用的密钥长度为56比特(实际上函数要求一个64位的密钥作为输入,但其中用到的有效长度只有56位,剩余8位可作为奇偶校验位或完全随意设置),DES加解密过程类似,加解密使用同样的算法,唯一不同的是解密时子密钥的使用次序要反过来。DES的整个体制是公开的,系统安全性完全依靠密钥的保密。
DES的运算可分为如下三步:

  • (1) 对输入分组进行固定的“初始置换”IP,可写为(L0,R0)=IP(输入分组),其中L0和R0称为“(左,右)半分组”,都是32比特的分组,IP是公开的固定的函数,无明显的密码意义。
  • (2) 将下面的运算迭代16轮(i=1,2,…,16):Li=Ri-1 ,Ri-1=Li-1 f(Ri-1,ki);这里ki称为轮密钥,是56比特输入密钥的一个48比特字串,f称为S盒函数(S表示交换),是一个代换密码,目的是获得很大程度的信息扩散。
  • (3) 将十六轮迭代后得到的结果(L16 ,R16)输入到IP的逆置换来消除初始置换的影响,这一步的输出就是DES算法的输出,即输出分组=IP-1(R16 , L16),此处在输入IP-1之前,16轮迭代输出的两个半分组又进行了一次交换。

DES的加密与解密算法都是用上述三个步骤,不同的是如果在加密算法中使用的轮密钥为k1, k2,…, k16,则解密算法中的轮密钥就应当是k16, k15,…, k1,可记为(k1, k2,…, k16`)=( k16, k15,…, k1)。
DES算法的一轮迭代处理过程如下图所示。

des1.png

DES的计算过程如下图所示。

des2.png

在加密密钥k下,将明文消息m加密为密文c,使用DES将c在k下解密为明文,解密过程如下:(L0,R0)=IP(c)=IP(IP-1(R16 , L16)),即(L0,R0)=(R16 , L16);在第一轮中,L1= R0= L16 =R15,R1=L0 f(R0,k1)= R16 f(L16 ,k1)=[ L16 f(R15 ,k16)] f(R15 ,k16)= L15,即(L1,R1)=(R15 , L15);同样的,在接下来的15轮迭代中,可以得到(L2,R2)=(R14 , L14),……,(L16,R16)=(R0 , L0);最后一轮结束后,交换L16和R16,即(R16,L16`)=( L0, R0),IP-1(L0, R0)= IP-1(IP(m))=m,解密成功。

des加密代码

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
//-----------------------------------------

//    密码学实验;des加密

//    date:2017-10-22

//    coded_by:haoming

//-----------------------------------------

//-----------------------------------------

//				所需头文件

//-----------------------------------------

#include "stdafx.h"

#include<iostream>

#include<bitset>

#include<string>

#include<fstream>

using namespace std;

//-----------------------------------------

//			全局变量

//-----------------------------------------

bitset<64> key;                // 64位密钥

bitset<48> sub_key[16];        // 存放16轮子密钥

//-----------------------------------------

//				函数声明

//-----------------------------------------

bitset<32> f(bitset<32> R, bitset<48> k);			//des加密运算的f函数

bitset<28> left_shift(bitset<28> k, int shift);		//密钥产生操作中的左移函数

void generate_keys();								//密钥生成函数:生成16个48位的子密钥

bitset<64> char_to_bitset(const char s[8]);			//字符串转二进制

char* bitset_to_char(bitset<64> b);					//二进制转字符串

bitset<64> encrypt(bitset<64>& plain);				//加密函数

bitset<64> decrypt(bitset<64>& cipher);				//解密函数

int my_pow(int x, int y);							//求次方

//--------------------------------------------

//			输入数据使用的置换表

//--------------------------------------------

//【1】初始置换表

int ip[] = { 58, 50, 42, 34, 26, 18, 10, 2,

60, 52, 44, 36, 28, 20, 12, 4,

62, 54, 46, 38, 30, 22, 14, 6,

64, 56, 48, 40, 32, 24, 16, 8,

57, 49, 41, 33, 25, 17, 9,  1,

59, 51, 43, 35, 27, 19, 11, 3,

61, 53, 45, 37, 29, 21, 13, 5,

63, 55, 47, 39, 31, 23, 15, 7 };

// 【2】尾置换表

int ip_1[] = { 40, 8, 48, 16, 56, 24, 64, 32,

39, 7, 47, 15, 55, 23, 63, 31,

38, 6, 46, 14, 54, 22, 62, 30,

37, 5, 45, 13, 53, 21, 61, 29,

36, 4, 44, 12, 52, 20, 60, 28,

35, 3, 43, 11, 51, 19, 59, 27,

34, 2, 42, 10, 50, 18, 58, 26,

33, 1, 41,  9, 49, 17, 57, 25 };

//----------------------------------------------

//				密钥使用的置换表

//----------------------------------------------

// 【1】密钥置换表,将64位密钥变成56位

int pc_1[] = { 57, 49, 41, 33, 25, 17, 9,

1, 58, 50, 42, 34, 26, 18,

10,  2, 59, 51, 43, 35, 27,

19, 11,  3, 60, 52, 44, 36,

63, 55, 47, 39, 31, 23, 15,

7, 62, 54, 46, 38, 30, 22,

14,  6, 61, 53, 45, 37, 29,

21, 13,  5, 28, 20, 12,  4 };

// 【2】压缩置换,将56位密钥压缩成48位子密钥

int pc_2[] = { 14, 17, 11, 24,  1,  5,

3, 28, 15,  6, 21, 10,

23, 19, 12,  4, 26,  8,

16,  7, 27, 20, 13,  2,

41, 52, 31, 37, 47, 55,

30, 40, 51, 45, 33, 48,

44, 49, 39, 56, 34, 53,

46, 42, 50, 36, 29, 32 };

// 【3】每轮左移的位数

int shift_bits[] = { 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1 };

//-------------------------------------------------

//			des加密运算使用的置换表

//-------------------------------------------------

// 【1】扩展置换表,将 32位 扩展至 48位

int expand[] = { 32,  1,  2,  3,  4,  5,

4,  5,  6,  7,  8,  9,

8,  9, 10, 11, 12, 13,

12, 13, 14, 15, 16, 17,

16, 17, 18, 19, 20, 21,

20, 21, 22, 23, 24, 25,

24, 25, 26, 27, 28, 29,

28, 29, 30, 31, 32,  1 };

// 【2】S盒,每个S盒是4x16的置换表,6位 -> 4位

int s_box[8][4][16] = {

	{

		{ 14,4,13,1,2,15,11,8,3,10,6,12,5,9,0,7 },

		{ 0,15,7,4,14,2,13,1,10,6,12,11,9,5,3,8 },

		{ 4,1,14,8,13,6,2,11,15,12,9,7,3,10,5,0 },

		{ 15,12,8,2,4,9,1,7,5,11,3,14,10,0,6,13 }

	},

	{

		{ 15,1,8,14,6,11,3,4,9,7,2,13,12,0,5,10 },

		{ 3,13,4,7,15,2,8,14,12,0,1,10,6,9,11,5 },

		{ 0,14,7,11,10,4,13,1,5,8,12,6,9,3,2,15 },

		{ 13,8,10,1,3,15,4,2,11,6,7,12,0,5,14,9 }

	},

	{

		{ 10,0,9,14,6,3,15,5,1,13,12,7,11,4,2,8 },

		{ 13,7,0,9,3,4,6,10,2,8,5,14,12,11,15,1 },

		{ 13,6,4,9,8,15,3,0,11,1,2,12,5,10,14,7 },

		{ 1,10,13,0,6,9,8,7,4,15,14,3,11,5,2,12 }

	},

	{

		{ 7,13,14,3,0,6,9,10,1,2,8,5,11,12,4,15 },

		{ 13,8,11,5,6,15,0,3,4,7,2,12,1,10,14,9 },

		{ 10,6,9,0,12,11,7,13,15,1,3,14,5,2,8,4 },

		{ 3,15,0,6,10,1,13,8,9,4,5,11,12,7,2,14 }

	},

	{

		{ 2,12,4,1,7,10,11,6,8,5,3,15,13,0,14,9 },

		{ 14,11,2,12,4,7,13,1,5,0,15,10,3,9,8,6 },

		{ 4,2,1,11,10,13,7,8,15,9,12,5,6,3,0,14 },

		{ 11,8,12,7,1,14,2,13,6,15,0,9,10,4,5,3 }

	},

	{

		{ 12,1,10,15,9,2,6,8,0,13,3,4,14,7,5,11 },

		{ 10,15,4,2,7,12,9,5,6,1,13,14,0,11,3,8 },

		{ 9,14,15,5,2,8,12,3,7,0,4,10,1,13,11,6 },

		{ 4,3,2,12,9,5,15,10,11,14,1,7,6,0,8,13 }

	},

	{

		{ 4,11,2,14,15,0,8,13,3,12,9,7,5,10,6,1 },

		{ 13,0,11,7,4,9,1,10,14,3,5,12,2,15,8,6 },

		{ 1,4,11,13,12,3,7,14,10,15,6,8,0,5,9,2 },

		{ 6,11,13,8,1,4,10,7,9,5,0,15,14,2,3,12 }

	},

	{

		{ 13,2,8,4,6,15,11,1,10,9,3,14,5,0,12,7 },

		{ 1,15,13,8,10,3,7,4,12,5,6,11,0,14,9,2 },

		{ 7,11,4,1,9,12,14,2,0,6,10,13,15,3,5,8 },

		{ 2,1,14,7,4,10,8,13,15,12,9,0,3,5,6,11 }

	}

};

// 【3】P置换,32位 -> 32位

int p[] = { 16,  7, 20, 21,

29, 12, 28, 17,

1, 15, 23, 26,

5, 18, 31, 10,

2,  8, 24, 14,

32, 27,  3,  9,

19, 13, 30,  6,

22, 11,  4, 25 };

//主函数

int main()

{

	//-----------------------------------

	//			字符串的加解密

	//-----------------------------------

	//【1】加密

	//明文和密钥(长度均为8,即64位)

	string s = "ihaoming";

	string k = "ihaoming";

	//转存位二进制

	bitset<64> plain = char_to_bitset(s.c_str());

	key = char_to_bitset(k.c_str());

	// 生成16个子密钥

	generate_keys();

	//执行加密操作

	bitset<64> cipher = encrypt(plain);

	//cout<<bitset_to_char(plain)<<endl;

	//将加密后的结果存放到cipher.txt文件中

	fstream file1;

	file1.open("D://cipher.txt", ios::binary | ios::out);

	file1.write((char*)&cipher, sizeof(cipher));

	file1.close();

	//【2】解密

	//以二进制的方式读取密文

	bitset<64> temp;

	file1.open("D://cipher.txt", ios::binary | ios::in);

	file1.read((char*)&temp, sizeof(temp));

	file1.close();

	//执行解密操作

	bitset<64> temp_plain = decrypt(temp);

	//将解密的结果存入plain.txt文件

	file1.open("D://plain.txt", ios::binary | ios::out);

	file1.write((char*)&temp_plain, sizeof(temp_plain));

	file1.close();

	//-----------------------------------

	//			文件的加解密

	//-----------------------------------

	ifstream in;

	ofstream out;

	//加密win7自带的koala图片

	in.open("D://Koala.jpeg", ios::binary);

	out.open("D://cipher2.txt", ios::binary);

	//每次读取8个字节

	while (in.read((char*)&plain, sizeof(plain)))

	{

		//加密

		bitset<64> cipher = encrypt(plain);

		//写出

		out.write((char*)&cipher, sizeof(cipher));

		//清零

		plain.reset();  

	}

	in.close();

	out.close();

	// 解密 

	in.open("D://cipher2.txt", ios::binary);

	out.open("D://Koala.jpeg", ios::binary);

	//每次读取8个字节

	while (in.read((char*)&plain, sizeof(plain)))

	{

		//解密

		bitset<64> temp = decrypt(plain);

		//存放结果

		out.write((char*)&temp, sizeof(temp));

		//清零

		plain.reset(); 

	}

	in.close();

	out.close();

    return 0;

}

//加密运算的f函数处理

//输入:32位的数据R,48位的子密钥k

//输出:32位的输出

bitset<32> f(bitset<32> R, bitset<48> k)

{

	bitset<48> expandR;

	// 【1】32位数据扩展成48位

	for (int i = 0; i<48; ++i)

		expandR[47 - i] = R[32 - expand[i]];

	// 【2】:扩展后的数据与48位的子密钥作异或运算

	expandR = expandR ^ k;

	// 【3】:查找s_box置换表

	bitset<32> output;

	int x = 0;

	for (int i = 0; i<48; i = i + 6)

	{

		//换算十进制来计算行数

		int row = expandR[47 - i] * 2 + expandR[47 - i - 5];

		//换算十进制来计算列数

		int col = expandR[47 - i - 1] * 8 + expandR[47 - i - 2] * 4 + expandR[47 - i - 3] * 2

			+ expandR[47 - i - 4];

		//找到s_box表中的数字

		int num = s_box[i / 6][row][col];

		//置换

		bitset<4> binary(num);

		output[31 - x] = binary[3];

		output[31 - x - 1] = binary[2];

		output[31 - x - 2] = binary[1];

		output[31 - x - 3] = binary[0];

		x += 4;

	}

	// 【4】:P-置换,32 -> 32

	bitset<32> tmp = output;

	for (int i = 0; i<32; ++i)

		output[31 - i] = tmp[32 - p[i]];

	return output;

}

//密钥产生过程中CD两部分的左移操作

//输入:28位密钥,位移长度

//输出:左移结果

bitset<28> left_shift(bitset<28> k, int shift)

{

	//临时变量

	bitset<28> tmp = k;

	for (int i = 27; i >= 0; --i)

	{

		if (i - shift<0)//防止越界

			k[i] = tmp[i - shift + 28];

		else

			k[i] = tmp[i - shift];

	}

	return k;

}

//密钥生成函数:生成16个48位的子密钥

void generate_keys()

{

	//变量声明

	bitset<56> realKey;

	bitset<28> left;

	bitset<28> right;

	bitset<48> compress_key;

	//【1】 去掉奇偶标记位,将64位密钥变成56位

	for (int i = 0; i<56; ++i)

		realKey[55 - i] = key[64 - pc_1[i]];

	//【2】 生成子密钥,保存在 sub_keys[16] 中

	for (int round = 0; round<16; ++round)

	{

		// 前28位与后28位

		for (int i = 28; i<56; ++i)

			left[i - 28] = realKey[i];

		for (int i = 0; i<28; ++i)

			right[i] = realKey[i];

		// 左移

		left = left_shift(left, shift_bits[round]);

		right = left_shift(right, shift_bits[round]);

		// 压缩置换,由56位得到48位子密钥

		for (int i = 28; i<56; ++i)

			realKey[i] = left[i - 28];

		for (int i = 0; i<28; ++i)

			realKey[i] = right[i];

		for (int i = 0; i<48; ++i)

			compress_key[47 - i] = realKey[56 - pc_2[i]];

		sub_key[round] = compress_key;

	}

}

//将char字符数组转为二进制

//输入:长度为8的字符数组

//输出:64位bitset对象

//注:const char s[8],8*8 = 64bits

bitset<64> char_to_bitset(const char s[8])

{

	bitset<64> bits;

	for (int i = 0; i<8; ++i)

		for (int j = 0; j<8; ++j)

			//左移一位再与1相与实现按位存取二进制

			bits[i * 8 + j] = ((s[i] >> j) & 1);

	return bits;

}

//二进制转字符串

char* bitset_to_char(bitset<64> b)

{

	 char s[8];

	 int sum = 0;

	 for (int i = 0; i<8; ++i)

	 {

		for (int j = 0; j<8; ++j)

		{

			//先转为十进制

			if (b[i*8+j] == 1)

			{

				sum += my_pow(2, 7-j);

			}

		}

		//再转为字符

		s[i] = char(sum);

		sum = 0;

	 }

	return s;

}

int my_pow(int x, int y)

{

	int result = 1;

	for (int i = 0; i < y; i++)

	{

		result *= x;

	}

	return result;

}

//DES加密

//输入:明文plain

//输出:密文cipher

bitset<64> encrypt(bitset<64>& plain)

{

	//变量声明

	bitset<64> cipher;

	bitset<64> currentBits;

	bitset<32> left;

	bitset<32> right;

	bitset<32> newLeft;

	// 【1】:初始置换IP

	for (int i = 0; i<64; ++i)

		currentBits[63 - i] = plain[64 - ip[i]];

	// 【2】:获取 Li 和 Ri

	for (int i = 32; i<64; ++i)

		left[i - 32] = currentBits[i];

	for (int i = 0; i<32; ++i)

		right[i] = currentBits[i];

	// 【3】:16轮的迭代运算操作

	for (int round = 0; round<16; ++round)

	{

		//暂存右边

		newLeft = right;

		//右边边与密钥进行f函数操作,结果与左边进行抑或操作,最后结果赋值给新的右边

		right = left ^ f(right, sub_key[round]);

		//旧的右边赋值给左边

		left = newLeft;

	}

	// 【4】:合并L16和R16,注意合并为 R16L16

	for (int i = 0; i<32; ++i)

		cipher[i] = left[i];

	for (int i = 32; i<64; ++i)

		cipher[i] = right[i - 32];

	// 【5】:结尾置换IP-1

	currentBits = cipher;

	for (int i = 0; i<64; ++i)

		cipher[63 - i] = currentBits[64 - ip_1[i]];

	// 返回密文

	return cipher;

}

//DES解密

//输入:密文cipher

//输出:明文:plain

bitset<64> decrypt(bitset<64>& cipher)

{

	//变量声明

	bitset<64> plain;

	bitset<64> currentBits;

	bitset<32> left;

	bitset<32> right;

	bitset<32> newLeft;

	// 【1】:初始置换IP

	for (int i = 0; i<64; ++i)

		currentBits[63 - i] = cipher[64 - ip[i]];

	// 【2】:获取 Li 和 Ri

	for (int i = 32; i<64; ++i)

		left[i - 32] = currentBits[i];

	for (int i = 0; i<32; ++i)

		right[i] = currentBits[i];

	// 【3】:16轮迭代(解密的时候,子密钥逆序应用)

	for (int round = 0; round<16; ++round)

	{

		//暂存右边

		newLeft = right;

		//右边边与密钥进行f函数操作,结果与左边进行抑或操作,最后结果赋值给新的右边

		right = left ^ f(right, sub_key[15 - round]);

		//旧的右边赋值给左边

		left = newLeft;

	}

	// 【4】:合并L16和R16,注意合并为 R16L16

	for (int i = 0; i<32; ++i)

		plain[i] = left[i];

	for (int i = 32; i<64; ++i)

		plain[i] = right[i - 32];

	// 【5】:结尾置换IP-1

	currentBits = plain;

	for (int i = 0; i<64; ++i)

		plain[63 - i] = currentBits[64 - ip_1[i]];

	// 返回明文

	return plain;

}  

本文由芒果浩明发布,转载请注明来源。 本文来源:https://mangoroom.cn/algorithm/des-encryption.html


微信公众号