1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
|
/**
* @file main.cpp
* @author your name ([email protected])
* @brief 学习eigen: 数据类型的基本操作
* @version 0.1
* @date 2021-10-12
*
* @copyright Copyright (c) 2021
*
*/
#include <iostream>
#include "Eigen/Dense" //稠密矩阵相关定义
void PrintTestPlatform()
{
std::cout << "------------------------test platform info----------------------------"<<std::endl;
std::cout << "Eigen version : "<< EIGEN_WORLD_VERSION <<"."<< EIGEN_MAJOR_VERSION << "."<< EIGEN_MINOR_VERSION << std::endl;
std::string system_name =
#if defined(__Apple__)
"Mac Os"
#elif defined(__linux__)
"Linux"
#else
"Windows";
#endif
std::cout<< "System : "<< system_name << std::endl;
std::string compiler =
#if defined(__clang__)
"clang " + ver_string(__clang_major__, __clang_minor__, __clang_patchlevel__);
#elif defined(__GNUC__)
"gcc " + ver_string(__GNUC__, __GNUC_MINOR__, __GNUC_PATCHLEVEL__);
#else
"msvc " + std::to_string(_MSC_VER);
#endif
std::cout<< "Compiler : " << compiler << std::endl;
std::cout << "------------------------test platform info----------------------------"<<std::endl;
}
int main(int argc, char** argv)
{
PrintTestPlatform();
//-----------------------构造函数、初始化--------------------------
{
//数组列向量形式vector
/*
[1]
[2]
...
*/
//列向量由Matrix固定列为1,定义行数所得,如
//typedef Matrix<float, 2, 1> Vector2f;
Eigen::Vector2f v2f(1.1f, 2.2f); //构造函数小括号初始化
Eigen::Vector2d v2d{3.0, 5.0}; //c++11统一初始化格式大括号初始化
Eigen::Vector2i v2i = {1, 3}; //大括号赋值初始化
std::cout<< "Vector2f: \n"<<v2f << "\n"
<< "Vector2d: \n"<<v2d << "\n"
<< "Vector2i: \n"<<v2i << "\n";
Eigen::Vector3i v3i; //未初始化则为随机数值,Eigen不会默认初始化
std::cout<<" Vector3i before initialize: \n" << v3i << "\n";
v3i << 1, 2, 3; //<<运算符初始化
Eigen::VectorXi vxi(5); //未初始化则为随机数值,Eigen不会默认初始化
std::cout<<" VectorXi before initialize: \n" << vxi << "\n";
vxi <<1, 2, 3, 4, 5;
std::cout<< "Vector3i: \n"<<v3i <<"\n"
<< "VectorXi: \n"<<vxi << "\n";
Eigen::Vector3f v3fz = Eigen::Vector3f::Zero(); //初始化为0
std::cout<< "Eigen::Vector3f::Zero(): "<< v3fz << "\n";
//数组行向量形式
// [1] [2]
Eigen::RowVector2f rv2f(2.0f, 4.0f);//typedef Matrix<float, 2, 1> Vector2f;
Eigen::RowVector2d rv2d{1.0, 3.0};
Eigen::RowVector2i rv2i = {1, 2};
Eigen::RowVectorXi rvxi(5);
rvxi << 1, 2, 3, 4, 5;
std::cout<< "RowVector2f: "<<rv2f << "\n"
<< "RowVector2d: "<<rv2d << "\n"
<< "RowVector2i: "<<rv2i << "\n"
<< "RowVectorXi: "<<rvxi << "\n";
//稠密矩阵
//Eigen::Matrix2i m2i(1, 2, 3, 4); 错误,无此构造函数
//Eigen::Matrix2i m2i = {1, 2, 3, 4}; 错误,无此初始化方法
//Eigen::Matrix2i m2i{1, 2, 3, 4}; 错误,无此初始化方法
Eigen::Matrix2i m2i; //<< 运算符初始化
std::cout<< "Matrix2i before initialize: \n" <<m2i <<"\n";
m2i << 1, 2, 3, 4;
//1 2
//3 4
std::cout<< "Matrix2i: \n" <<m2i <<"\n";
Eigen::Matrix3i m3i;
std::cout<< "Matrix3i before initialize: \n" <<m3i <<"\n";
m3i << 1, 2, 3,
4, 5, 6,
7, 8, 9;
std::cout<< "Matrix3i: \n" <<m3i <<"\n";
Eigen::MatrixXi mat_xi(2, 4); //构造2x4静态矩阵
std::cout<< "MatrixXi before initialize: \n" <<mat_xi <<"\n";
mat_xi << 1, 2, 3, 4,
5, 6, 7, 8;
std::cout<< "MatrixXi: \n" <<mat_xi <<"\n";
//初始化为0
Eigen::Matrix3i m3iz = Eigen::Matrix3i::Zero();
std::cout<<"Eigen::Matrix3i::Zero():\n"<<m3iz << "\n";
//获取最大静态矩阵尺寸
//int max_index = (std::size_t(1) << (8 * sizeof(int) - 1)) - 1;
//size_t max_size = std::sqrt(max_index) - 1;
//std::cout<<"max size: "<< max_size << std::endl;
//Eigen::MatrixXi max_mat(max_size, max_size);
//单位矩阵
Eigen::Matrix4f mat_identity = Eigen::Matrix4f::Identity();
std::cout<<"Eigen::Matrix4f::Identity(): \n" << mat_identity << std::endl;
}
//------------------------赋值、取值---------------------------------
{
const size_t size = 100;
Eigen::MatrixXi mat(size, size);
//单个元素取值、赋值,矩阵索引从左上角(0, 0)开始
mat(0, 0) = 1;
std::cout << "mat(0,0): "<< mat(0, 0) << std::endl;
//set方法赋值
Eigen::Matrix4i mat4i = Eigen::Matrix4i::Identity();
std::cout<< "mat4i before set ones:\n" << mat4i << std::endl;
//全部元素置为1
mat4i.setOnes();
std::cout<< "mat4i after set ones:\n" << mat4i << std::endl;
//全部元素置为0
mat4i.setZero();
std::cout<< "mat4i after set zeros:\n" << mat4i << std::endl;
//随机数
mat4i.setRandom();
std::cout<< "mat4i after set random:\n" << mat4i << std::endl;
//区域块取值、赋值
//从位置(10,10)起,往右下角方向取6x8区域块元素
std::cout << mat.block(10, 10, 6, 8) << std::endl;
Eigen::MatrixXi tmp_mat(6, 8);
tmp_mat.setOnes();
//现有matrix赋值给区块
mat.block(10, 10, 6, 8) = tmp_mat;
std::cout << mat.block(10, 10, 6, 8) << std::endl;
//直接操作设置区块
mat.block(10, 10, 6, 8).setZero();
std::cout << mat.block(10, 10, 6, 8) << std::endl;
//左上角为起点
mat.topLeftCorner(4, 4) = Eigen::Matrix4i::Zero();
std::cout<< "mat.topLeftCorner(4, 4):\n"<< mat.topLeftCorner(4, 4) << std::endl;
//右上角为起点
mat.topRightCorner(4, 4) = Eigen::Matrix4i::Zero();
std::cout<< " mat.topRightCorner(4, 4):\n" << mat.topRightCorner(4, 4) << std::endl;
//左下角为起点
mat.bottomLeftCorner(4, 4) = Eigen::Matrix4i::Ones();
std::cout<<" mat.bottomLeftCorner(4, 4):\n"<< mat.bottomLeftCorner(4, 4) << std::endl;
//右下角为起点
mat.bottomRightCorner(4, 4) = Eigen::Matrix4i::Ones();
//右下角为起点
std::cout<<" mat.bottomRightCorner(4, 4)\n"<< mat.bottomRightCorner(4, 4)<< std::endl;
}
//-----------------------基本运算-----------------------------------
{
//数乘
Eigen::Vector3f v3f = Eigen::Vector3f::Ones();
auto v2 = 3.0f * v3f;
std::cout<<v2 << std::endl;
Eigen::Matrix4i mat4i = Eigen::Matrix4i::Ones();
auto m1 = 5 * mat4i; //或者 auto r1 = mat4i * 5;
std::cout << m1 << std::endl;
//加减乘
Eigen::Matrix3i m3i_1 = Eigen::Matrix3i::Ones();
Eigen::Matrix3i m3i_2 = Eigen::Matrix3i::Identity();
auto add = m3i_1 + m3i_2;
std::cout<< "add:\n" << add << std::endl;
auto sub = m3i_1 - m3i_2;
std::cout<< "sub:\n" << sub << std::endl;
auto mul = m3i_1 * m3i_2;
std::cout<< "mul:\n" << mul << std::endl;
//求逆
//Eigen::Matrix3i m3i; 非浮点类型数据不可逆,编译不通过
Eigen::Matrix3f m3f;
m3f << 1, 0, 2,
2, 3, 0,
0, 2, 4;
std::cout << "inv:\n"<<m3f.inverse() << std::endl;
//转置
std::cout<< m3f.transpose() << std::endl;
//元素和
std::cout<< m3i_2.sum() << std::endl;
//元素均值
std::cout<< m3f.mean() << std::endl;
//行列式
std::cout<< m3i_1.determinant() << std::endl;
}
return 0;
}
|